SHOU4/4L link cell wall cellulose synthesis to pattern‐triggered immunity

Summary Pattern recognition receptors (PRRs) are plasma membrane‐localised proteins that sense molecular patterns to initiate pattern‐triggered immunity (PTI). Receptor‐like cytoplasmic kinases (RLCKs) function downstream of PRRs to propagate signal transduction via the phosphorylation of substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2023-05, Vol.238 (4), p.1620-1635
Hauptverfasser: Wang, Weibing, Fei, Yue, Wang, Yongjin, Song, Beibei, Li, Lin, Zhang, Wenjing, Cheng, Hangyuan, Zhang, Xiaojuan, Chen, She, Zhou, Jian‐Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Pattern recognition receptors (PRRs) are plasma membrane‐localised proteins that sense molecular patterns to initiate pattern‐triggered immunity (PTI). Receptor‐like cytoplasmic kinases (RLCKs) function downstream of PRRs to propagate signal transduction via the phosphorylation of substrate proteins. The identification and characterisation of RLCK‐regulated substrate proteins are critical for our understanding of plant immunity. We showed that SHOU4 and SHOU4L are rapidly phosphorylated upon various patterns elicitation and are indispensable for plant resistance to bacterial and fungal pathogens. Protein–protein interaction and phosphoproteomic analysis revealed that BOTRYTIS‐INDUCED KINASE 1, a prominent protein kinase of RLCK subfamily VII (RLCK‐VII), interacted with SHOU4/4L and phosphorylated multiple serine residues on SHOU4L N‐terminus upon pattern flg22 treatment. Neither phospho‐dead nor phospho‐mimic SHOU4L variants complemented pathogen resistance and plant development defect of the loss‐of‐function mutant, suggesting that reversible phosphorylation of SHOU4L is critical to plant immunity and plant development. Co‐immunoprecipitation data revealed that flg22 induced SHOU4L dissociation from cellulose synthase 1 (CESA1) and that a phospho‐mimic SHOU4L variant inhibited the interaction between SHOU4L and CESA1, indicating the link between SHOU4L‐mediated cellulose synthesis and plant immunity. This study thus identified SHOU4/4L as new components of PTI and preliminarily revealed the mechanism governing SHOU4L regulation by RLCKs.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.18829