Low-cost scanning LIDAR architecture with a scalable frame rate for autonomous vehicles
Autonomous vehicles need accurate 3D perception with a decent frame rate and high angular resolution to detect obstacles reliably and avoid collisions. We developed a low-cost scanning multichannel light detection and ranging sensor architecture allowing scalable frame rates by adjusting the number...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2023-01, Vol.62 (3), p.675-682 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autonomous vehicles need accurate 3D perception with a decent frame rate and high angular resolution to detect obstacles reliably and avoid collisions. We developed a low-cost scanning multichannel light detection and ranging sensor architecture allowing scalable frame rates by adjusting the number of laser and detector pairs. Scanning is achieved by a pair of micro-electro-mechanical system (MEMS) mirrors. A control pattern for the MEMS mirrors to maximize the frame rate is presented. A built prototype based on the proposed architecture achieves a frame rate of 11.5 Hz, a field of view of 70
×30
, and an angular resolution of 0.4°. The distance resolution is 6 cm. Reliable single-shot detection for low-reflective objects up to 19 m indoors and 11 m under direct sunlight exposure is achieved. A performance assessment based on the presented measurement system for recently available vertical-cavity surface-emitting laser arrays with power densities up to 1
/
shows promising improvement potential. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.479765 |