Correlating Charge Transfer Dynamics with Interfacial Trap States in High-Efficiency Organic Solar Cells

The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (9), p.12109-12118
Hauptverfasser: Wang, Tong, Chen, Zhi-Hao, Qiao, Jia-Wei, Qin, Wei, Liu, Jian-Qiang, Wang, Xing-Zhu, Pu, Yong-Jin, Yin, Hang, Hao, Xiao-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c21470