Oxidation Kinetics and Composite Scale Formation in the System Mo(Al,Si)2

The oxidation kinetics of hot‐pressed Mo(Al0.01Si0.99)2 and Mo(Al0.1Si0.9)2 were measured at 480°C, and between 1200° and 1600°C. The qualitative oxidation of arc‐melted Mo(Al0.1Si0.9)2, Mo(Al0.3Si0.7)2, Mo(Al0.5Si0.5)2, and Mo3Al8 was examined after 600°C for 1000 h in air. At all temperatures, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2002-02, Vol.85 (2), p.444-452
Hauptverfasser: Ramberg, C. Eric, Worrell, Wayne L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oxidation kinetics of hot‐pressed Mo(Al0.01Si0.99)2 and Mo(Al0.1Si0.9)2 were measured at 480°C, and between 1200° and 1600°C. The qualitative oxidation of arc‐melted Mo(Al0.1Si0.9)2, Mo(Al0.3Si0.7)2, Mo(Al0.5Si0.5)2, and Mo3Al8 was examined after 600°C for 1000 h in air. At all temperatures, the compositional difference between the materials yielded very different oxidation rates and scale microstructures. At 1400° and 1500°C, microstructural evolution of the oxide scales resulted in improved oxidation resistance at long times (>400 h). At these temperatures, a significant reduction in the long‐time oxidation kinetics was correlated with the in situ formation of an inner mullite scale. At 480° and 600°C, oxidation resistance improved significantly with increasing aluminum concentration. Contrary to the behavior of MoSi2, samples of Mo(Al0.01Si0.99)2 did not demonstrate catastrophic oxidation, and samples of Mo(Al0.1Si0.9)2 were very oxidation resistant.
ISSN:0002-7820
1551-2916
DOI:10.1111/j.1151-2916.2002.tb00109.x