Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys

Surface modification of metal alloys using laser has become a unique tool to reduce surface related failure mechanisms such as wear, corrosion, erosion or high temperature oxidation. Laser surface engineered (LSE) ceramic coatings have been proved to enhance surface properties of Al alloys such as h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2002-10, Vol.199 (1), p.222-233
Hauptverfasser: Kadolkar, Puja, Dahotre, Narendra B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface modification of metal alloys using laser has become a unique tool to reduce surface related failure mechanisms such as wear, corrosion, erosion or high temperature oxidation. Laser surface engineered (LSE) ceramic coatings have been proved to enhance surface properties of Al alloys such as hardness and wear resistance. This technique has been shown to be capable of producing a wide variety of interesting metallurgical microstructure in the coating as well as in the adjoining substrate. These microstructures provide novel properties, which cannot be produced by any conventional processing technique. In addition, these coatings are metallurgically bonded, thus providing a sound and adherent interface between the coating and the substrate. In this present investigation, laser surface engineering technique has been employed to deposit ceramic (TiC) coating on aluminum alloy substrate. TiC coating was deposited on two types of aluminum substrates, alloy 2024 and 6061 using an Nd-YAG laser beam. The effect of laser processing parameters, such as power intensity and speed on the thickness, microstructure and morphology of both the coating and the heat-affected zone have been evaluated using a scanning electron microscope (SEM). Results of experiments in this study show that by controlling the process parameters it is possible to produce varied microstructures according to the surface requirement of the application.
ISSN:0169-4332
1873-5584
DOI:10.1016/S0169-4332(02)00799-7