NIR regulated upconversion nanoparticles@metal-organic framework composite hydrogel dressing with catalase-like performance and enhanced antibacterial efficacy for accelerating wound healing

Developing a hydrogel dressing with excellent antibacterial efficacy for accelerating wound healing is high desirable in clinical applications. In this work, NIR regulated metal-organic framework composite hydrogel dressing was constructed for enhanced antibacterial efficacy and accelerated wound he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-04, Vol.235, p.123683-123683, Article 123683
Hauptverfasser: Chen, Yu, Li, Danqi, Zhong, Yaping, Lu, Zhentan, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing a hydrogel dressing with excellent antibacterial efficacy for accelerating wound healing is high desirable in clinical applications. In this work, NIR regulated metal-organic framework composite hydrogel dressing was constructed for enhanced antibacterial efficacy and accelerated wound healing via the compounding between hydrogel and UCNPs@ZrMOF-Pt nanoparticles. The visible light emitted from upconvertion nanoparticles (UCNPs) activated porphyrin based metal-organic framework (MOF) in composite hydrogel to generate 1O2 for photodynamic antibacterial therapy under NIR laser irradiation. Moreover, the UCNPs@ZrMOF-Pt in composite hydrogel with catalase-like performance could effectively convert the high concentration H2O2 in wound to abundant O2, which relieved the hypoxic in infected wound. Thus, the photodynamic antibacterial efficacy was remarkably enhanced, leading to accelerate the wound healing. This work presented a novel strategy for high efficient antibacterial therapy and accelerated wound healing.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.123683