ZmAdSS1 encodes adenylosuccinate synthetase and plays a critical role in maize seed development and the accumulation of nutrients

Adenylosuccinate synthetase (AdSS, EC.6.3.4.4) is a key enzyme in the de novo synthesis of purine nucleotides in organisms. Its downstream product AMP plays a critical role in the process of energy metabolism, which can affect the content of ADP and ATP. However, impacts of its loss-of-function on p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant science (Limerick) 2023-05, Vol.330, p.111644-111644, Article 111644
Hauptverfasser: Zhu, Yaxi, Zhang, Shuaisong, Yu, Jingjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adenylosuccinate synthetase (AdSS, EC.6.3.4.4) is a key enzyme in the de novo synthesis of purine nucleotides in organisms. Its downstream product AMP plays a critical role in the process of energy metabolism, which can affect the content of ADP and ATP. However, impacts of its loss-of-function on plant metabolism and development has been relatively poorly reported. Here, we report the identification and analysis of a maize yu18 mutant obtained by mutagenesis with ethylmethane sulfonate (EMS). The yu18 is a lethal-seed mutant. Map-based cloning and allelic testing confirmed that yu18 encodes adenylosuccinate synthetase and was named ZmAdSS1. ZmAdSS1 is constitutively expressed. In the yu18 mutant, the activity of the ZmAdSS1 enzyme was decreased, which caused AMP content reduced 33.62%. The yu18 mutation significantly suppressed endoreduplication and disrupted nutrient accumulation, resulting in lower starch and protein contents that are responsible for seed filling. Further transcriptome and metabolome analysis revealed dramatic alterations in the carbohydrate metabolic pathway and amino acid metabolic pathway in yu18 kernels. Our findings demonstrate that ZmAdSS1 participates in the synthesis of AMP and affects endosperm development and nutrient accumulation in maize seeds.
ISSN:0168-9452
1873-2259
DOI:10.1016/j.plantsci.2023.111644