Structure-activity relationship study of antitrypanosomal analogues of gibbilimbol B using multivariate analysis and computation-aided drug design
[Display omitted] Gibbilimbol B and analogues were isolated from the Brazilian plant Piper malacophyllum and displayed activity against trypomastigote forms of Trypanosoma cruzi as well as reduced toxicity against NCTC cells. These results stimulated the preparation of a series of 24 chemically rela...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry letters 2023-03, Vol.83, p.129190-129190, Article 129190 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Gibbilimbol B and analogues were isolated from the Brazilian plant Piper malacophyllum and displayed activity against trypomastigote forms of Trypanosoma cruzi as well as reduced toxicity against NCTC cells. These results stimulated the preparation of a series of 24 chemically related analogues to study the potential of these compounds against T. cruzi trypomastigotes and explore structure–activity relationships. Initially, 12 compounds were planned, maintaining the same extension of the linear side chain of gibbilimbol B and unsaturation on the C-4 position but changing the functional groups – ester and amide – and variating the substituent at the p-position in the aromatic ring. Other 12 compounds were prepared using a branched side chain containing an ethyl group at the C-2 position. Overall, these structurally-related analogues demonstrated promising activity against trypomastigote forms (EC50 200 μM). Using multivariate statistics and machine learning analysis, aspects associated with structure/activity were related to their three-dimensional structure and, mainly, to the substituents on the aromatic ring. Obtained results suggested that the presence of t-butyl or nitro groups at p-position with appropriate side chains causes an alteration in the electron topological state, Van der Waals volumes, surface areas, and polarizabilities of tested compounds which seem to be essential for biological activity against T. cruzi parasites. |
---|---|
ISSN: | 0960-894X 1464-3405 |
DOI: | 10.1016/j.bmcl.2023.129190 |