Twin Web Disk: A Step Beyond Convention

This paper will discuss a study of an innovative design for an advanced turbine rotor that could have a great impact on future engines. The design challenge is to provide a minimum weight turbine rotor system that can withstand beyond state-of-the-art levels of AN2 (turbine annulus area multiplied b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2002-04, Vol.124 (2), p.298-302
Hauptverfasser: Cairo, R. R., Sargent, K. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper will discuss a study of an innovative design for an advanced turbine rotor that could have a great impact on future engines. The design challenge is to provide a minimum weight turbine rotor system that can withstand beyond state-of-the-art levels of AN2 (turbine annulus area multiplied by speed squared). An AN2 limit has been reached for high-pressure turbine (HPT) disks configured in conventional (single web) geometry with state-of-the-art nickel alloys. The problem has reached the point where increased AN2 has been declared a “break-through” technology. The twin-web disk has the potential to provide this break through. This paper will present the history of this turbine rotor design, analytical results, material/component processing, and concept validation results. All work was performed under an Air Force sponsored program entitled “Composite Ring Reinforced Turbine” (CRRT).
ISSN:0742-4795
1528-8919
DOI:10.1115/1.1445440