Towards a phase-locked superconducting integrated receiver: prospects and limitations
Presently a Josephson flux flow oscillator (FFO) appears to be the most developed superconducting on-chip local oscillator for integrated submillimeter-wave SIS receivers. The feasibility of phase locking the FFO to an external reference oscillator at all frequencies of interest has to be proven for...
Gespeichert in:
Veröffentlicht in: | Physica. C, Superconductivity Superconductivity, 2002-02, Vol.367 (1), p.249-255 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Presently a Josephson flux flow oscillator (FFO) appears to be the most developed superconducting on-chip local oscillator for integrated submillimeter-wave SIS receivers. The feasibility of phase locking the FFO to an external reference oscillator at all frequencies of interest has to be proven for practical FFO implementation in radio astronomy and other spectral applications. A linewidth of a phase-locked FFO as low as 1 Hz has been measured relative to an external reference oscillator in the frequency range 270–440 GHz on steep Fiske steps in the low damping regime. The increase of the intrinsic linewidth at higher voltages due to an abrupt increase of the internal damping considerably complicates phase locking of the FFO. Comprehensive measurements of the FFO radiation linewidth have been performed using an integrated harmonic SIS mixer. Results on FFO linewidth and spectral line profile have been compared to theory in order to optimize the FFO design. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field, has been studied. Two integrated receiver concepts with phase-lock loop have been developed and experimentally tested. |
---|---|
ISSN: | 0921-4534 1873-2143 |
DOI: | 10.1016/S0921-4534(01)01046-2 |