Functional homology of tachykinin signalling: The influence of human substance P on the immune system of the mealworm beetle, Tenebrio molitor L

Tachykinin-related peptides (TRPs) are one of the most prominent families of neuropeptides in the animal kingdom. Insect TRPs display strong structural and functional homology to vertebrate tachykinins (TKs). To study functional homologies between these two neuropeptide families, the influence of hu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental and comparative immunology 2023-05, Vol.142, p.104669-104669, Article 104669
Hauptverfasser: Urbański, A., Konopińska, N., Walkowiak-Nowicka, K., Roizman, D., Lubawy, J., Radziej, M., Rolff, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tachykinin-related peptides (TRPs) are one of the most prominent families of neuropeptides in the animal kingdom. Insect TRPs display strong structural and functional homology to vertebrate tachykinins (TKs). To study functional homologies between these two neuropeptide families, the influence of human substance P (SP, one of the essential vertebrate TKs) on the immune system of the mealworm beetle, Tenebrio molitor L., was analysed. Human SP influences the phagocytic abilities of T. molitor haemocytes. Peptide injection leads to an increase in the number of haemocytes participating in the phagocytosis of latex beads. In contrast, incubation of haemocytes from non-injected beetles in a solution of physiological saline and SP causes a decrease in phagocytic activity. Treatment with human SP also led to increased adhesion of haemocytes, but no changes in the arrangement of the F-actin cytoskeleton were observed. Interestingly, 6 h after human SP injection, increased DNA integrity in T. molitor haemocytes was reported. The opposite effects were observed 24 h after SP injection. Human SP caused the upregulation of humoral immune responses, such as phenoloxidase (PO) activity in the T. molitor haemolymph, and the downregulation of immune-related genes encoding coleoptericin A, tenecin 3 and Toll receptor. However, genes encoding attacin 2 and cecropin were upregulated. Despite these differences, the antimicrobial activity of T. molitor haemolymph was significantly lower in beetles injected with SP than in control beetles. Moreover, an analysis of the direct influence of SP on lysozyme activity was performed. Our results suggest that SP at a concentration of 10−6 M can directly inhibit lysozyme activity. However, an opposite effect was reported after the application of SP at a concentration of 10−4 M. The presented results suggest structural and functional homology between TK signalling in vertebrates and insects. Primarily, this was visible in the context of the humoral response and general antimicrobial activity of T. molitor haemolymph. However, some of the results related to haemocyte function may also indicate the importance of the TK and TRP sequences for evoking immunological effects. •Human substance P influence insect cellular and humoral response.•Human substance P can directly affect lysozyme activity.•Results suggest homology between TK signalling in vertebrates and insects.
ISSN:0145-305X
1879-0089
DOI:10.1016/j.dci.2023.104669