Hindfoot motion through helical axis image-based on dynamic CT scan using an original simulated weightbearing device
Determining the treatment of subtalar joint (STJ) instability requires a better understanding of the biomechanical principles underlying the condition and, a proper diagnosis. This study aimed to analyze "in vivo" the range of motion of the subtalar joint (STJ) measured on two (2D) and thr...
Gespeichert in:
Veröffentlicht in: | Foot and ankle surgery 2023-10, Vol.29 (7), p.531-537 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determining the treatment of subtalar joint (STJ) instability requires a better understanding of the biomechanical principles underlying the condition and, a proper diagnosis. This study aimed to analyze "in vivo" the range of motion of the subtalar joint (STJ) measured on two (2D) and three dimensions (3D) image-based on CT Scan using an original device that maintains a simulated weightbearing. The secondary goal was to correlate the 2D and 3D measurement.
An observational study was conducted, using an original Dynamic Simulated Weightbearing Device. Asymptomatic ankles were included. Each subject underwent a CT scan under mechanical stress and simulated weightbearing conditions, maintaining maximum eversion and inversion hindfoot positions. The images were obtained, combining both inversion and eversion positions in a single model, which allows for to calculation of the motion vector as well as the helical axis. The helical axis (rotation angle and translation distance), subtalar tilt, anterior drawer, and, subtalar and calcaneocuboid uncoverage were the determinations.
Forty asymptomatic ankles were included. The average range of motion of the STJ amounts to 31.5° ± 9.1° of rotation and 1.56 ± 0.8 mm of translation distance. The anterior drawer and subtalar uncoverage variables were statistically significantly related to each other (r = 0.57; P = 0.00001). However, these 2-D measured variables were not related to kinematic measures of rotation through the helical axis (3D) (p = 0.14; p = 0.19)
The average range of motion of the STJ amounts to 31.5° ± 9.1° of rotation and 1.56 ± 0.8 mm of translation distance. We found no significant correlation between 2D and 3D measurements. In our opinion, the rotation angle and translation distance should be considered the most accurate measurements and should be calculated on every STJ instability for comparison with the asymptomatic population
Observational study. Level of evidence III |
---|---|
ISSN: | 1268-7731 1460-9584 |
DOI: | 10.1016/j.fas.2023.02.001 |