Comparing the Effects of Two Cryoprotectant Protocols, Dimethyl-Sulfoxide (DMSO) and Glycerol, on the Recovery Rate of Cultured Keratinocytes on Amniotic Membrane
Background: Off-the-shelf supply of viable engineered tissue is critical for effective and fast treatment of life-threatening injuries such as deep burns. An expanded keratinocyte sheet on the human amniotic membrane (KC sheet-HAM) is a beneficial tissue-engineering product for wound healing. To acc...
Gespeichert in:
Veröffentlicht in: | International journal of lower extremity wounds 2023-02, p.15347346231155751-15347346231155751 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Off-the-shelf supply of viable engineered tissue is critical for effective and fast treatment of life-threatening injuries such as deep burns. An expanded keratinocyte sheet on the human amniotic membrane (KC sheet-HAM) is a beneficial tissue-engineering product for wound healing. To access an on-hand supply for the widespread application and overcome the time-consuming process, it is necessary to develop a cryopreservation protocol that guarantees the higher recovery of viable keratinocyte sheets after freeze-thawing. This research aimed to compare the recovery rate of KC sheet-HAM after cryopreservation by dimethyl-sulfoxide (DMSO) and glycerol. Methods: Amniotic membrane was decellularized with trypsin, and keratinocytes were cultured on it to form a multilayer, flexible, easy-to-handle KC sheet-HAM. The effects of 2 different cryoprotectants were investigated by histological analysis, live-dead staining, and proliferative capacity assessments before and after cryopreservation. Results: KCs well adhered and proliferated on the decellularized amniotic membrane and successfully represented 3 to 4 stratified layers of epithelialization after 2 to 3 weeks culture period; making it easy to cut, transfer, and cryopreserve. However, viability and proliferation assay indicated that both DMSO and glycerol cryosolutions have detrimental effects on KCs, and KCs-sheet HAM could not recover to the control level after 8 days of culture post-cryo. The KC sheet lost its stratified multilayer nature on AM, and sheet layers were reduced in both cryo-groups compared to the control. Conclusion: Expanding keratinocytes on the decellularized amniotic membrane as a multilayer sheet made a viable easy-to-handle sheet, nonetheless cryopreservation reduced viability and affected histological structure after thawing. Although some viable cells were detectable, our research highlighted the need for a better cryoprotectant protocol other than DMSO and glycerol, specific for the successful banking of viable tissue constructs. |
---|---|
ISSN: | 1534-7346 1552-6941 |
DOI: | 10.1177/15347346231155751 |