Trace metal and mineral speciation of remediated wastes using electron microscopy
Electron microscopic techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalyses (EPMA), were used to evaluate metal species and mineralogical phases associated with metal-bearing contaminated soil and industrial wastes that have...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2002-02, Vol.372 (3), p.436-443 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electron microscopic techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalyses (EPMA), were used to evaluate metal species and mineralogical phases associated with metal-bearing contaminated soil and industrial wastes that have been solidified and stabilized with Portland cement. Metals present in the wastes included arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc. In addition, mineral alterations and weathering features that affect the durability and containment of metals in aged remediated wastes were analyzed microscopically. Physical and chemical alteration processes identified included: freeze-thaw cracking; cracking caused by the formation of expansive minerals, such as ettringite and thaumasite; carbonation; and the movement of metals from waste aggregates into the surrounding cement matrix. Preliminary results show that although the extent of degradation after 6 years is considered slight to moderate, evaluations of durability and permanence of metals containment cannot be based on leaching and bulk chemistry analyses alone. The use of electron microscopic analyses is vital in studies that evaluate trace metal and mineral species and that attempt to predict the long-term performance of metal containment in solidified and stabilized wastes. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s002160101063 |