Adaptive optics LEO uplink pre-compensation with finite spatial modes

Adaptive optics pre-compensation of free-space optical communications uplink from ground to space is complicated by the "point ahead angle" due to spacecraft velocity and the finite speed of light, as well as anisoplanatism of the uplink beam and the wavefront beacon. This Letter explores...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-02, Vol.48 (4), p.880-883
Hauptverfasser: Walsh, Shane, Schediwy, Sascha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adaptive optics pre-compensation of free-space optical communications uplink from ground to space is complicated by the "point ahead angle" due to spacecraft velocity and the finite speed of light, as well as anisoplanatism of the uplink beam and the wavefront beacon. This Letter explores how pre-compensation varies with the number of spatial modes applied and how it varies with a beacon at the point-ahead angle versus a downlink beacon. Using a w  = 16 cm Gaussian beam propagating through a modified Hufnagel-Valley model as an example, we find pre-compensation performance plateaus beyond ∼100 applied modes regardless of integrated turbulence strength, and that a point ahead beacon provides a 1-4 dB gain in median received power and an order-of-magnitude reduction in scintillation over a downlink beacon at wavelengths typical of optical communications. Modeling tailored to specific scenarios should be conducted to determine whether implementing a resource-intensive point ahead beacon is the optimum path to meeting link requirements.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.482550