Microfabricated sensor device for CW and pulsed laser power measurements

On-line measurement is a trend of development toward laser-based applications. We present a fiber-integrated force sensor device for laser power measurement with both CW mode and pulse mode based on laser radiometric heat and radiation force sensing simultaneously. The sensor device is fabricated us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-01, Vol.31 (2), p.2330-2344
Hauptverfasser: Hu, Yuqiang, Xie, Fei, Liu, Qihui, Wang, Nan, Zhang, Jin, Liu, Yichen, Su, Yongquan, Wang, Yang, Chen, Hao, Wu, Zhenyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On-line measurement is a trend of development toward laser-based applications. We present a fiber-integrated force sensor device for laser power measurement with both CW mode and pulse mode based on laser radiometric heat and radiation force sensing simultaneously. The sensor device is fabricated using a standard microfabrication process. Laser intensity is determined through the displacement of a movable mirror measured by an integrated Fabry-Perot interferometer. Compared with the performance of the device in the ambient condition, a non-linearity error of 0.02% and measurement uncertainty of 2.06% is observed in the quasi-vacuum condition for CW laser illumination. This device can measure a CW laser power with a 46.4 μW/Hz noise floor and a minimum detection limit of 0.125 mW. For a pulsed laser, a non-linearity error of 0.37% and measurement uncertainty of 2.08% is achieved with a noise floor of 1.3 μJ/Hz and a minimum detection limit of 3 μJ.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.476509