Theoretical and experimental investigations of dispersion-managed, polarization-maintaining 1-GHz mode-locked fiber lasers
High-repetition-rate (up to GHz) femtosecond mode-locked lasers have attracted significant attention in many applications, such as broadband spectroscopy, high-speed optical sampling, and so on. In this paper, the characteristics of dispersion-managed, polarization-maintaining (PM) 1-GHz mode-locked...
Gespeichert in:
Veröffentlicht in: | Optics express 2023-01, Vol.31 (2), p.1916-1930 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-repetition-rate (up to GHz) femtosecond mode-locked lasers have attracted significant attention in many applications, such as broadband spectroscopy, high-speed optical sampling, and so on. In this paper, the characteristics of dispersion-managed, polarization-maintaining (PM) 1-GHz mode-locked fiber lasers were investigated both experimentally and numerically. Three compact and robust 1-GHz fiber lasers operating at anomalous, normal, and near-zero dispersion regimes were demonstrated, respectively. The net dispersion of the linear cavity is adjusted by changing types of PM erbium-doped fibers (EDFs) and semiconductor saturable absorber mirrors (SESAMs) in the cavity. Moreover, the long-term stability of the three mode-locked fiber lasers is proved without external control. In order to better understand the mode-locking dynamics of lasers, a numerical model was constructed for analysis of the 1-GHz fiber laser. Pulse evolution simulations have been carried out for soliton, dissipative-soliton, and stretched-pulse mode-locking regimes under different net dispersion conditions. Experimental results are basically in agreement with the numerical simulations. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.473457 |