Experimentally determined critical power for self-focusing of femtosecond vortex beams in air by a fluorescence measurement
The filamentation of the femtosecond vortex beam has attracted much attention because of the unique filamentation characteristics, such as annular distribution and helical propagation, and related applications. The critical power for self-focusing of the femtosecond vortex beams is a key parameter i...
Gespeichert in:
Veröffentlicht in: | Optics express 2023-01, Vol.31 (2), p.1557-1566 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The filamentation of the femtosecond vortex beam has attracted much attention because of the unique filamentation characteristics, such as annular distribution and helical propagation, and related applications. The critical power for self-focusing of the femtosecond vortex beams is a key parameter in the filamentation process and applications. But until now, there is no quantitative determination of the critical power. In this work, we experimentally determine the self-focusing critical power of femtosecond vortex beams in air by measuring fluorescence using a photomultiplier tube. The relation between the self-focusing critical power and the topological charge is further obtained. Our work provides a simple method to determine the self-focusing critical power not only for vortex beams but also for Airy, Bessel, vector, and other structured laser beams. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.474355 |