The mobility of long-runout landslides
Several issues relevant to the mobility of long-runout landslides are examined. A central idea developed in this paper is that the apparent coefficient of friction (ratio of the fall height to the runout distance) commonly used to describe landslide mobility is physically meaningless. It is proposed...
Gespeichert in:
Veröffentlicht in: | Engineering geology 2002-03, Vol.63 (3), p.301-331 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several issues relevant to the mobility of long-runout landslides are examined. A central idea developed in this paper is that the apparent coefficient of friction (ratio of the fall height to the runout distance) commonly used to describe landslide mobility is physically meaningless. It is proposed that the runout distance depends primarily on the volume and not on the fall height, which just adds scatter to the correlation. The negative correlation observed between the apparent coefficient of friction and the volume is just due to the fact that, on the gentle slopes on which landslides travel and come to rest, a large increase in runout distance due to a large volume corresponds to a small increase in the total fall height, hence to a decrease in the apparent coefficient of friction.
It is shown that the spreading of a fluid-absent, granular flow is not able to explain the large runout distances of landslides, and in particular does not allow the centre of mass to travel further than expected for a sliding block. This contrasts with the behaviour of natural landslides, for which the centre of mass is shown to travel much further than expected from a simple Coulomb model. The presence of an interstitial fluid which can partly or entirely support the load of particles allows the effective coefficient of solid friction to be reduced or even suppressed. Air is not efficient for fluidising large landslides and a loose debris cannot slide over a basal layer of entrapped and compressed air, as air would rapidly pass through the debris in the form of bubbles during batch sedimentation. Water is much more efficient as a fluidising medium due to its higher density and viscosity, and its incompressibility. As water is known to enhance the mobility of the saturated debris flows, it is proposed that water is also responsible for the long runout of landslides. This is consistent with the fact that the increase in runout with volume is similar for debris flows and landslides. Field evidence suggests that most landslides are unsaturated with water but not dry, even on Mars.
Comparison of the velocity of well-documented landslides with that predicted by fluid-absent, granular models shows that these models predict landslides that are much faster and less responsive to topography than natural ones. The relatively low velocities of landslides suggest that energy dissipation is dominated by a velocity-dependent stress and that the coefficient of solid friction is very low. |
---|---|
ISSN: | 0013-7952 1872-6917 |
DOI: | 10.1016/S0013-7952(01)00090-4 |