Quantum Fluctuation of the Quantum Geometric Tensor and Its Manifestation as Intrinsic Hall Signatures in Time-Reversal Invariant Systems

In time-reversal invariant systems, all charge Hall effects predicted so far are extrinsic effects due to the dependence on the relaxation time. We explore intrinsic Hall signatures by studying the quantum noise spectrum of the Hall current in time-reversal invariant systems, and discover intrinsic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-01, Vol.130 (3), p.036202-036202, Article 036202
Hauptverfasser: Wei, Miaomiao, Wang, Luyang, Wang, Bin, Xiang, Longjun, Xu, Fuming, Wang, Baigeng, Wang, Jian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In time-reversal invariant systems, all charge Hall effects predicted so far are extrinsic effects due to the dependence on the relaxation time. We explore intrinsic Hall signatures by studying the quantum noise spectrum of the Hall current in time-reversal invariant systems, and discover intrinsic thermal Hall noises in both linear and nonlinear regimes. As the band geometric characteristics, quantum geometric tensor and Berry curvature play critical roles in various Hall effects; so do their quantum fluctuations. It is found that the thermal Hall noise in linear order of the electric field is purely intrinsic, and the second-order thermal Hall noise has both intrinsic and extrinsic contributions. In particular, the intrinsic part of the second-order thermal Hall noise is a manifestation of the quantum fluctuation of the quantum geometric tensor, which widely exists as long as Berry curvature is nonzero. These intrinsic thermal Hall noises provide direct measurable means to band geometric information, including Berry curvature related quantities and quantum fluctuation of quantum geometric tensor.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.036202