Optimized fabrication of Cu-doped ZnO/calcined CoFe‒LDH composite for efficient degradation of bisphenol a through synergistic visible-light photocatalysis and persulfate activation: Performance and mechanisms
A novel magnetically separable Cu/ZnO/CoFe‒CLDH composite, whose synthesis was optimized using the Taguchi approach, was optimally synthesized by hydrothermally coupling Cu-doped ZnO and calcined CoFe–LDH. The synthesized Cu/ZnO/CoFe‒CLDH was applied to construct a synergistic process of integrating...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-04, Vol.323, p.121186-121186, Article 121186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel magnetically separable Cu/ZnO/CoFe‒CLDH composite, whose synthesis was optimized using the Taguchi approach, was optimally synthesized by hydrothermally coupling Cu-doped ZnO and calcined CoFe–LDH. The synthesized Cu/ZnO/CoFe‒CLDH was applied to construct a synergistic process of integrating visible-light photocatalysis (VPC) with persulfate activation (PSA) and to degrade bisphenol A (BPA). Various characterizations proved that Cu/ZnO/CoFe‒CLDH possessed excellent physicochemical, optoelectronic and magnetic properties, thereby enhancing the catalytic performance. The Cu/ZnO/CoFe‒CLDH composite achieved highly efficient BPA degradation during the synergistic VPC‒PSA process, and its reaction rate constant (0.74 h−1) was 6.17-, 4.11-, and 2.85-fold higher than that of Cu/ZnO, CoFe‒CLDH, and Cu/ZnO/CoFe‒CLDH (VPC only), respectively. Moreover, the effects of the catalyst dosage, initial pollutant concentration, solution pH, persulfate dosage and coexisting ions on BPA degradation were comprehensively investigated. Radical-trapping experiments revealed that the contributions of ·OH, SO4·‒, ·O2−, and 1O2 involved in BPA degradation. Based on the intermediates identified by LC/MS, the main BPA degradation pathways were determined, the overall trend of which reflects a decreasing ecotoxicity. This study verified the effectiveness of the synergistic VPC‒PSA process with Cu/ZnO/CoFe‒CLDH, which could be used as a new reference for removing organic micropollutants from water.
[Display omitted]
•A magnetically separable Cu/ZnO/CoFe−CLDH composite was optimally synthesized.•Cu/ZnO/CoFe−CLDH achieved a synergism of photocatalysis and persulfate activation.•Catalytic degradation of BPA was effectively enhanced during the synergistic process.•Characterization and ROS formation analyses revealed the enhanced catalytic mechanism.•Ecotoxicity effects of intermediates in BPA degradation pathways tended to decrease. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2023.121186 |