A Heterogeneous Single Atom Cobalt Catalyst for Highly Efficient Acceptorless Dehydrogenative Coupling Reactions
A fundamental understanding of metal active sites in single‐atom catalysts (SACs) is important and challenging in the development of high‐performance catalyst systems. Here, a highly efficient and straightforward molten‐salt‐assisted approach is reported to create atomically dispersed cobalt atoms s...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-05, Vol.19 (18), p.e2207941-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fundamental understanding of metal active sites in single‐atom catalysts (SACs) is important and challenging in the development of high‐performance catalyst systems. Here, a highly efficient and straightforward molten‐salt‐assisted approach is reported to create atomically dispersed cobalt atoms supported over vanadium pentoxide layered material, with each cobalt atom coordinated with four neighboring oxygen atoms. The liquid environment and the strong polarizing force of the molten salt at high temperatures potentially favor the weakening of VO bonding and the formation of CoO bonding on the vanadium oxide surface. This cobalt SAC achieves extraordinary catalytic efficiency in acceptorless dehydrogenative coupling of alcohols with amines to give imines, with more than 99% selectivity under almost 100% conversion within 3 h, along with a high turnover frequency (TOF) of 5882 h−1, exceeding those of previously reported benchmarking catalysts. Moreover, it delivers excellent recyclability, reaction scalability, and substrate tolerance. Density functional theory (DFT) calculations further confirm that the optimized coordination environment and strong electronic metal‐support interaction contribute significantly to the activation of reactants. The findings provide a feasible route to construct SACs at the atomic level for use in organic transformations.
Herein, a molten‐salt‐assisted approach is reported to create atomically dispersed Co atoms anchored over V2O5 support. This Co catalyst exhibits remarkable catalytic activity and selectivity in the synthesis of imine by acceptorless dehydrogenative coupling reactions. DFT calculations reveal that the unique Co1‐O4 moieties and the strong electronic metal‐support interactions contribute significantly to excellent catalytic performance. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202207941 |