Biomass carbon stocks and stock changes in managed hedgerows

Landscape features, such as hedgerows, can play a role in enhancing terrestrial carbon (C) sinks, especially in North-western Europe, where they form a large part of the agricultural landscape. To date, there are few studies relating aerial imagery to ground-truthed biomass measurements and relating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-05, Vol.871, p.162073-162073, Article 162073
Hauptverfasser: Black, Kevin, Lanigan, Gary, Ward, Mark, Kavanagh, Ian, hUallacháin, Daire Ó., Sullivan, Lilian O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Landscape features, such as hedgerows, can play a role in enhancing terrestrial carbon (C) sinks, especially in North-western Europe, where they form a large part of the agricultural landscape. To date, there are few studies relating aerial imagery to ground-truthed biomass measurements and relating changes in biomass to hedgerow management. This study sought to develop relationships between measured biomass of hedgerows and digital elevation model (DEM) data from drones and aircraft. Furthermore, changes in hedgerow above-ground and below-ground biomass stocks were assessed using a systematic grid sample, DEM data and developed volume-biomass regression models. The developed inventory framework was then applied to a pilot study area of 419,701 ha in Ireland. Robust relationships were developed relating DEM data to volume and above-ground biomass. Model equations were also developed linking above-ground and below-ground biomass. However, these were less robust due to the confounding impacts of hedgerow management intensity, hedgerow type and dominant species. Above-ground biomass density was linearly correlated with hedge volume. Wider, less intensively managed, irregular hedges exhibit a higher biomass stocks per km, when compared to regular, more intensively managed hedgerows. When the models were extrapolated to the county level, hedgerow biomass C pools for Co Wexford and Waterford are suggested to be a net emission of −0.3 tC ha−1 year−1 due to hedgerow removals and management. Flailing or coppicing of hedgerows, in particular irregular profile hedgerows, had the largest impact on the biomass C balance in the pilot study area. Re-introduction of traditional management practices such as layering and increasing the allowable hedgerow width in areas qualifying for farm payments could be considered with the aim of increasing the maximum sink potential of established hedgerows. [Display omitted] •Hedgerow creation and management can enhance terrestrial carbon sinks.•Carbon biomass sink saturation may occur early following hedgerow establishment due to intensive cutting.•Wider hedgerows have a higher biomass sequestration potential that intensively flailed hedgerows•Hedgerows are an emission of carbon dioxide due management regimes implemented to comply with agricultural payment schemes.•Changes in agricultural policy to increase hedgerow width thresholds could provide additional future mitigation.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.162073