Musculus senhousei as a promising source of bioactive peptides protecting against alcohol-induced liver injury

Alcohol-induced liver injury has become a leading risk for human health, however, effective strategies for the prevention or treatment are still lacking. Hence, the present study explored the potential of Musculus senhousei as a source of hepatoprotective peptides against alcoholic liver injury usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and chemical toxicology 2023-04, Vol.174, p.113652-113652, Article 113652
Hauptverfasser: Xiao, Chuqiao, Zhou, Liuyang, Gao, Jie, Jia, Ruibo, Zheng, Yang, Zhao, Suqing, Zhao, Mouming, Toldrá, Fidel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alcohol-induced liver injury has become a leading risk for human health, however, effective strategies for the prevention or treatment are still lacking. Hence, the present study explored the potential of Musculus senhousei as a source of hepatoprotective peptides against alcoholic liver injury using in vitro, in vivo and in silico methods. Results indicated that Musculus senhousei peptides (MSP, extracted by simulated gastrointestinal digestion of cooked mussel) exhibited notable antioxidant (ABTS and DPPH assays) and alcohol dehydrogenase (ADH) stabilizing activity in vitro. The ingestion of MSP markedly alleviated alcohol-induced liver injury in mice, as indicated by the decrease of serum transaminases (AST and ALT). In line with in vitro assays, significantly increased hepatic ADH activity and activated antioxidative defense system (GSH, SOD, GSH-Px and CAT) were observed, whereas the oxidative stress (MDA) was decreased. Peptidomic analysis revealed over 6000 peptides with favorable amino acid compositions, and a total of 20 potentially novel peptides with bioactivity and bioavailability were excavated among 746 of the most influential peptides using an in silico strategy. Peptides (i.e. WLPMKL, WLWLPA, RLC and RCL) were further synthesized and validated in vitro to be bioactive. These findings suggest that Musculus senhousei can be an ideal source of bioactive peptides for the prevention of alcoholic liver injury.
ISSN:0278-6915
1873-6351
DOI:10.1016/j.fct.2023.113652