A Study of Ice Accretion Shape on Cables Under Freezing Rain Conditions
The influence of atmospheric conditions (specifically precipitation rate and external heat flux) on the freezing rain ice accretion forming on a non-rotating, horizontal cylinder is studied, using an analytical model based on a simple form of the equations for conservation of mass and heat balance....
Gespeichert in:
Veröffentlicht in: | Journal of offshore mechanics and Arctic engineering 2002-08, Vol.124 (3), p.162-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of atmospheric conditions (specifically precipitation rate and external heat flux) on the freezing rain ice accretion forming on a non-rotating, horizontal cylinder is studied, using an analytical model based on a simple form of the equations for conservation of mass and heat balance. In keeping with the freezing rain application, but in order to simplify this first step, we have assumed vertical incidence of precipitation (no wind) and no dripping from the accretion (hence light to moderate precipitation rates with relatively low air temperatures). The initial ice accretion shape and the location of its center of mass are examined as a function of the ratio of the precipitation mass flux to the total heat flux lost from the ice surface. An increase in the flux ratio leads to a quantifiable downward displacement of the accretion center of mass. We complement this analysis with numerical simulations, using an improved, two-dimensional version of the Szilder-Lozowski morphogenetic model that predicts the evolution of the accretion shape. For the first time, the freezing probability, which is the critical model parameter, is expressed as a function of location and atmospheric conditions for an accretion shape evolving with time. Using the morphogenetic model, we examine the influence of atmospheric conditions on the accretion shape and ice load. In particular, we address the question of what gives rise to extreme ice loads by identifying the range of atmospheric conditions that tends to maximize (or minimize) the ice load for a given amount of precipitation. The results of this research are applicable to predicting ice formation on overhead transmission lines. |
---|---|
ISSN: | 0892-7219 1528-896X |
DOI: | 10.1115/1.1488932 |