Broadband UV-Excitation and Red/Far-Red Emission Materials for Plant Growth: Tunable Spectrum Conversion in Eu3+,Mn4+ Co-doped LaAl0.7Ga0.3O3 Phosphors
Broadband ultraviolet (UV) excitation and red/far-red emission phosphors can effectively convert solar spectrum to enhance photosynthesis and promote morphogenesis in plants. Based on the above application requirements, Eu3+ single-doped LaAl1–y Ga y O3 solid solutions and Eu3+,Mn4+ codoped LaAl0.7G...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2023-02, Vol.62 (7), p.3141-3152 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Broadband ultraviolet (UV) excitation and red/far-red emission phosphors can effectively convert solar spectrum to enhance photosynthesis and promote morphogenesis in plants. Based on the above application requirements, Eu3+ single-doped LaAl1–y Ga y O3 solid solutions and Eu3+,Mn4+ codoped LaAl0.7Ga0.3O3 phosphors were designed and synthesized in this work. The LaAl0.7Ga0.3O3:0.05Eu3+ (LAG:Eu3+) phosphor exhibits a strong charge transfer band (CTB) excitation and characteristic 5D0 → 7F2 transition red emission (619 nm), which is very similar to the luminescence properties of Eu3+-organic ligand compound (EuL3). Rietveld refinement studies further revealed that the cation substitution disturbs the site symmetry. The optimal Eu3+, Mn4+ co-doped LaAl0.7Ga0.3O3 (LAG:Eu,Mn) phosphor possesses a dual-band excitation spectrum in broadband ultraviolet (UVA, UVB) area and a dual-band emission spectrum within red/far-red area. Under the sunlight radiation, the real-time spectrum of luminous laminated glasses fabricated by coating the LAG:Eu,Mn phosphor shows the percentage of radiant intensity in the red/far-red region significantly increases, suggesting that the phosphor can be a promising candidate for solar spectral conversion in plant cultivation. We believe this work provides a new idea for developing novel broadband ultraviolet excitation and red/far-red emission phosphors. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.2c04022 |