Estimation of Strength Reliability for Ceramic/Metal Jointing Structure: The Basic Study of Thermal Stress and Residual Stress Behavior during Ceramic/Metal Joint Process

A simple analysis method was developed by making well use of finite element method (FEM) program for general purposes. The temperature dependence of mechanical properties for every material consisting of ceramic/metal jointing was considered in this method. Using this method, the residual stresses p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Society of Materials Science, Japan Japan, 2000/04/15, Vol.49(4), pp.461-467
Hauptverfasser: OKABE, Nagatoshi, ZHU, Xia, HIROBE, Kouta, NAKAHASHI, Masako
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple analysis method was developed by making well use of finite element method (FEM) program for general purposes. The temperature dependence of mechanical properties for every material consisting of ceramic/metal jointing was considered in this method. Using this method, the residual stresses producing during the jointing process were analyzed for Si3N4/SUS304 joints with the insert layer of Cu made by an active metal brazing (Ti-Ag-Cu) method so as to clarify the residual stress behavior due to the creep of Cu. The equivalent normal stress calculated from the multi-axial stresses was used to evaluate the strength of fracture which resulted from initial flaws existing in the ceramic side. From the analytical results, it is found that the temperature at which the residual stress begins to generate is about 550°C, and it is clarified that the creep of Cu layer during cooling process may relax the residual stress in ceramics side and can not be neglected for the estimation of ceramic fracture due to residual stress.
ISSN:0514-5163
1880-7488
DOI:10.2472/jsms.49.461