Vertical Graphene Film Enables High-Performance Quasi-Solid-State Planar Zinc-Ion Microbatteries

With the advantages of low cost, high safety, and environmental friendliness, quasi-solid-state zinc-ion microbatteries (ZIMBs) have received widespread attention in the field of flexible wearable devices and on-chip integratable energy storage. However, hysteresis Zn-ion transport kinetics and inho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-02, Vol.15 (7), p.9486-9493
Hauptverfasser: Zhou, Yumei, Li, Wangyang, Xie, Yonghui, Deng, Liying, Ke, Bingyuan, Jian, Yijia, Cheng, Shuying, Qu, Baihua, Wang, Xinghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advantages of low cost, high safety, and environmental friendliness, quasi-solid-state zinc-ion microbatteries (ZIMBs) have received widespread attention in the field of flexible wearable devices and on-chip integratable energy storage. However, hysteresis Zn-ion transport kinetics and inhomogeneous growth of the zinc anode result in the poor capacity reversibility and cycling stability. Herein, a quasi-solid-state planar zinc-ion cell was developed by employing a vertical graphene (VG) film as an effective conductive modification layer for both the cathode and anode. The VG distinctly induces uniform Zn deposition/stripping, accelerates the charge transport, and enhances the adhesion between the active materials and current collectors. As a result, planar Zn@VG//MnO2@VG exhibits a high areal capacity of 159 μAh cm–2, a remarkably high areal energy/power density of 201.5 μWh cm–2/67.16 μW cm–2, and a high capacity retention of 95.6% at a bending angle of 180°. The proposed facile strategy for electrode modification provides a new insight into the design of high-performance flexible and planar ZIMBs.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c22043