Control of n‑Phase Distribution in Quasi Two-Dimensional Perovskite for Efficient Blue Light-Emitting Diodes
Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with rein...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-02, Vol.15 (7), p.9574-9583 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m–2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron–phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron–phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c19979 |