Hydrogen-Bond Dynamics and Water Structure in Aqueous Ethylene Glycol Solution via Two-Dimensional Raman Correlation Spectroscopy
The hydrogen-bond (H-bond) dynamics and water structural transitions in aqueous ethylene glycol (EG) solution were investigated on the basis of concentration- and temperature-dependent two-dimensional Raman correlation spectroscopy (2D Raman-COS). At room temperature, EG-induced enhancement of the w...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-02, Vol.14 (6), p.1641-1649 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydrogen-bond (H-bond) dynamics and water structural transitions in aqueous ethylene glycol (EG) solution were investigated on the basis of concentration- and temperature-dependent two-dimensional Raman correlation spectroscopy (2D Raman-COS). At room temperature, EG-induced enhancement of the water structure when the EG/water molar ratio is less than 1:28 resulted from the hydrophobic effect around the methylene groups of EG. The decrease in the temperature caused an enhancement of the Raman peak at about 3200 cm–1, representing an increase in the orderliness of water molecules. Further analysis of the water-specific structures by 2D Raman-COS reveals that the strong H-bond structure preferentially responds to external perturbations and induces a weak H-bond structural transition in water. Finally, EG-induced water structural transitions were calculated by the density functional theory (DFT). Hopefully, 2D Raman-COS combined with DFT calculations would advance the study of solute-induced water structural transitions in water–organic chemistry. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.2c03695 |