Experimental and numerical research on the hydrological characteristics of sunken green space with a new type of composite structure
Based on the characteristics of concentrated rainwater runoff in the mountainous areas of southwestern China and the low rates of rainwater infiltration into low-permeability soils. We have built a new type of sunken green space structure with a combination of a “overflow port and rainwater storage...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-04, Vol.30 (16), p.47892-47912 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the characteristics of concentrated rainwater runoff in the mountainous areas of southwestern China and the low rates of rainwater infiltration into low-permeability soils. We have built a new type of sunken green space structure with a combination of a “overflow port and rainwater storage layer” and carried out model tests of storage and drainage performance under heavy rain conditions. The hydrological response of the new composite structure parameters to the sunken green space was analyzed using the HYDRUS-2D program. The results show that the new composite structure has a significant impact on runoff reduction, drainage, and rainwater storage. For the 100a return period, compared with
RSL-0
(0 cm rainwater storage layer), the initial and peak drainage times of
RSL-25
were delayed by 30 min and 38 min, respectively, and the rainwater storage rate increased by 13.5%. Compared with no overflow port, the peak drainage increased by 78%, the initial drainage time advanced by 73 min, and the cumulative drainage volume increased by 186%. In addition, as the height of the overflow increased, the surface rainwater absorbed by the sunken green space gradually decreased. The sunken green space with
OPH-5
(overflow port height of 5 cm) could absorb more than 75% of the rainwater in the rainwater overflow layer, while the absorption capacities of
OPH-7.5
and
OPH-10
(overflow port height of 7.5 cm and 10 cm) were basically below 75%. In this case, the
OPH-5
and the depth of the storage layer not being less than 250 cm provide the best setting for the new combined structure of the sunken green space. In conclusion, the new composite structure designed in this experiment effectively increased the hydrological performance of the layered sunken green space. |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-25621-5 |