Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields
The discovery of place cells and other spatially modulated neurons in the hippocampal complex of rodents has been crucial to elucidating the neural basis of spatial cognition. More recently, the replay of neural sequences encoding previously experienced trajectories has been observed during consumma...
Gespeichert in:
Veröffentlicht in: | Neural networks 2023-04, Vol.161, p.116-128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discovery of place cells and other spatially modulated neurons in the hippocampal complex of rodents has been crucial to elucidating the neural basis of spatial cognition. More recently, the replay of neural sequences encoding previously experienced trajectories has been observed during consummatory behavior—potentially with implications for rapid learning, quick memory consolidation, and behavioral planning. Several promising models for robotic navigation and reinforcement learning have been proposed based on these and previous findings. Most of these models, however, use carefully engineered neural networks, and sometimes require long learning periods. In this paper, we present a self-organizing model incorporating place cells and replay, and demonstrate its utility for rapid one-shot learning in non-trivial environments with obstacles. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2023.01.010 |