Some bounds for the minimum length of binary linear codes of dimension nine
We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)/spl les/76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2000-05, Vol.46 (3), p.1053-1056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)/spl les/76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary code. We also present some codes of minimum distance 32 and some related codes. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.841184 |