Some bounds for the minimum length of binary linear codes of dimension nine

We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)/spl les/76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2000-05, Vol.46 (3), p.1053-1056
Hauptverfasser: Bouyukliev, I., Guritman, S., Vavrek, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)/spl les/76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary code. We also present some codes of minimum distance 32 and some related codes.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.841184