Synthesis of WO3@WS2 core–shell nanostructures via solution-based sulfurization for improved performance of water splitting

High light absorption capacity and excellent charge transportation are significant for superior water-splitting performance. Here, WO3/WS2 core–shell nanowire arrays were fabricated using a two-step hydrothermal method. The crystal phase, morphology, crystal structure, chemical composition, and opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-01, Vol.13 (7), p.4150-4155
Hauptverfasser: Lai, Jianming, Wang, Bingjie, Gong, Yuedong, Sun, Chenwei, Wang, Weilin, Yang, Weiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High light absorption capacity and excellent charge transportation are significant for superior water-splitting performance. Here, WO3/WS2 core–shell nanowire arrays were fabricated using a two-step hydrothermal method. The crystal phase, morphology, crystal structure, chemical composition, and optical properties were characterized using XRD, SEM, TEM, XPS, and UV-vis spectroscopy. Consequently, the photocurrent density of the as-prepared WO3/WS2 photoanode was 0.91 mA cm−2 (at 1.23 V vs. RHE), which showed a 112% increase compared to that with pristine WO3. The enhanced photoelectrochemical performance, we believe, was due to the promoted light response and improved separation as well as transportation at the WO3/WS2 interface.
ISSN:2046-2069
DOI:10.1039/d2ra06354a