The effect of crustal anisotropy on reflector depth and velocity determination from wide-angle seismic data: a synthetic example based on South Island, New Zealand

When deriving velocity models by forward modelling or inverting travel time arrivals from seismic refraction data, a heterogeneous but isotropic earth is usually assumed. In regions where the earth is not isotropic at the scale at which it is being sampled, the assumption of isotropy can lead to sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2002-09, Vol.355 (1), p.145-161
Hauptverfasser: Godfrey, N.J, Christensen, N.I, Okaya, D.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When deriving velocity models by forward modelling or inverting travel time arrivals from seismic refraction data, a heterogeneous but isotropic earth is usually assumed. In regions where the earth is not isotropic at the scale at which it is being sampled, the assumption of isotropy can lead to significant errors in the velocities determined for the crust and the depths calculated to reflecting boundaries. Laboratory velocity measurements on rocks collected from the Haast Schist terrane of South Island, New Zealand, show significant (up to 20%) compressional (P) wave velocity anisotropy. Field data collected parallel and perpendicular to the foliation of the Haast Schist exhibit as much as 11% P-wave velocity anisotropy. We demonstrate, using finite-difference full-wavefield modelling, the types of errors and problems that might be encountered if isotropic methods are used to create velocity models from data collected in anisotropic regions. These reflector depth errors could be as much as 10–15% for a 10-km thick layer with significant (20%) P-wave velocity anisotropy. The implications for South Island, New Zealand, where the problem is compounded by extreme orientations of highly anisotropic rocks (foliation which varies from horizontal to near vertical), are considered. Finally, we discuss how the presence of a significant subsurface anisotropic body might manifest itself in wide-angle reflection/refraction and passive seismic datasets, and suggest ways in which such datasets may be used to determine the presence and extent of such anisotropic bodies.
ISSN:0040-1951
1879-3266
DOI:10.1016/S0040-1951(02)00138-5