Stability constraints for oscillatory neural networks

The stability of the equilibrium point (background activity) of oscillatory neural networks is an important property for computational applications that explore the switching between background activity and oscillatory states. Here we consider a general approach to this problem for networks of arbit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2000, Vol.32, p.585-589
Hauptverfasser: Truccolo, Wilson A, Ding, Mingzhou, Bressler, Steven L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of the equilibrium point (background activity) of oscillatory neural networks is an important property for computational applications that explore the switching between background activity and oscillatory states. Here we consider a general approach to this problem for networks of arbitrary size. For symmetric coupling, often the case in associative learning algorithms, we derive the stability constraints and establish explicit results for the coupling strengths to satisfy in order that the equilibrium state is stable.
ISSN:0925-2312
1872-8286
DOI:10.1016/S0925-2312(00)00215-0