Ionic Liquid Electrolyte with Weak Solvating Molecule Regulation for Stable Li Deposition in High‐Performance Li−O2 Batteries

Li−O2 batteries with bis(trifluoromethanesulfonyl)imide‐based ionic liquid (TFSI‐IL) electrolyte are promising because TFSI‐IL can stabilize O2− to lower charge overpotential. However, slow Li+ transport in TFSI‐IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-04, Vol.62 (17), p.e202218014-n/a
Hauptverfasser: Cai, Yichao, Hou, Yunpeng, Lu, Yong, Zhang, Qiu, Yan, Zhenhua, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Li−O2 batteries with bis(trifluoromethanesulfonyl)imide‐based ionic liquid (TFSI‐IL) electrolyte are promising because TFSI‐IL can stabilize O2− to lower charge overpotential. However, slow Li+ transport in TFSI‐IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole‐doped ionic aggregate in TFSI‐IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion‐derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high‐performance Li−O2 batteries. A robust Li deposition in TFSI‐IL electrolyte is achieved through rationally designing the solvation environment. Anisole was screened and found to slice the ionic aggregate to generate anisole‐doped ionic clusters, which significantly accelerates Li+ transport process in bulk electrolyte and SEI. The performance of Li−O2 battery is greatly improved thanks to the realized robust Li deposition behavior.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202218014