Polypropylene composite hernia mesh with anti-adhesion layer composed of PVA hydrogel and liposomes drug delivery system
Polypropylene (PP) mesh has been widely used in hernia repair as prosthesis material owing to its excellent balanced biocompatibility and mechanical properties. However, abdominal adhesion between the visceral and PP mesh is still a major problem. Therefore, anti-adhesive PP mesh was designed with p...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2023-03, Vol.223, p.113159-113159, Article 113159 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polypropylene (PP) mesh has been widely used in hernia repair as prosthesis material owing to its excellent balanced biocompatibility and mechanical properties. However, abdominal adhesion between the visceral and PP mesh is still a major problem. Therefore, anti-adhesive PP mesh was designed with poly(vinyl alcohol) (PVA) hydrogel and liposomes drug delivery system. First, PVA hydrogel coating was formed on the surface of PP mesh with freezing-thawing processing cycles (FTP). Subsequently, the lyophilized PVA10-c-PP was immersed in rapamycin (RPM)-loaded liposome solution until swelling equilibrated to obtain the anti-adhesion mesh RPM@LPS/PVA10-c-PP. It was demonstrated that the hydrogel coating can stably fix on the surface of PP mesh even after immersed in PBS solution at 37 °C or 40 °C for up to 30 days. In vitro cell tests revealed the excellent cytocompatibility and the potential to inhibit cell adhesion of the modified PP mesh. Moreover, the anti-adhesive effects of the RPM@LPS/PVA10-c-PP mesh was evaluated through in vivo experiments. The RPM@LPS/PVA10-c-PP mesh exhibited less adhesion than original PP mesh throughout the duration of implantation. At 30 days, the adhesion score of RPM@LPS/PVA10-c-PP mesh was 1.37 ± 0.75, however the original PP was 3 ± 0.71. Furthermore, the results of H&E and Masson trichrome staining proved that the RPM@LPS/PVA10-c-PP mesh showed slighter inflammation response and significant looser fibrous tissue surrounded the PP filaments as compared to the native PP. The current findings manifested that this type of RPM@LPS/PVA10-c-PP might be a potential candidate for anti-adhesion treatment.
Data will be made available on request.
[Display omitted]
•The PVA hydrogel coating was constructed with freezing-thawing processing cycles (FTP).•The PVA hydrogel coating on PP mesh can remain stably for one month.•The rapamycin (RPM)-loaded liposome (LPS) was successfully immobilized in the PVA hydrogel.•The RPM@LPS/PVA10-c-PP presents an excellent anti-adhesion property. |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2023.113159 |