The constancy of chemical weathering intensity on hillslopes in the arid to semiarid Qilian Mountains, NE Tibetan Plateau
Quantifying the relationship between the chemical weathering and denudation rates of active orogenic belts over a range of climates is the key to addressing the controversy over the uplift-weathering hypothesis. However, studies have focused on warm and humid environments and have not examined cold...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-04, Vol.870, p.161946-161946, Article 161946 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantifying the relationship between the chemical weathering and denudation rates of active orogenic belts over a range of climates is the key to addressing the controversy over the uplift-weathering hypothesis. However, studies have focused on warm and humid environments and have not examined cold and arid environments. Here, we present a new dataset of the chemical depletion fraction (CDF: ratio of the chemical weathering rate to the total denudation rate) across the arid to semiarid Qilian Mountains on the northeastern Tibetan Plateau, where the uplift-weathering hypothesis has been proposed. We selected 60 points from 12 catchments in the middle Qilian Mountains. At each point, we collected three samples (soil, saprolite, and bedrock samples) and calculated the CDF values based on their Zr concentrations. We found no clear correlation between the CDF and climatic factors (temperature, precipitation, and normalized difference vegetation index (NDVI)), topographic factors (slope and local relief), and denudation rate. The calculated chemical weathering rates, nevertheless, are positively correlated with precipitation, NDVI, and denudation rate, and negatively correlated with temperature. This result indicates that the Qilian Mountains are under supply-limited conditions, even at high denudation rates (>800 t km−2 y−1). We speculate that low temperatures ( |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.161946 |