Partially Oxidized Carbon Nanomaterials with Ni/NiO Heterostructures as Durable Glucose Sensors
Conventional enzyme-based glucose biosensors have limited extensive applications in daily life because glucose oxidase is easily inactivated and is expensive. In this paper, we propose a strategy to prepare a new type of cost-effective, efficient, and robust nonenzymatic Ni-CNT-O for electrochemical...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2023-02, Vol.62 (7), p.3288-3296 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conventional enzyme-based glucose biosensors have limited extensive applications in daily life because glucose oxidase is easily inactivated and is expensive. In this paper, we propose a strategy to prepare a new type of cost-effective, efficient, and robust nonenzymatic Ni-CNT-O for electrochemical glucose sensing. It is first followed by the pyrolysis of Ni-ABDC nanostrips using melamine to grow carbon nanotubes (CNTs) to give an intermediate product of Ni-CNT, which is further accompanied by partial oxidation to enable the facile formation of hierarchical carbon nanomaterials with improved hydrophilicity. A series of physicochemical characterizations have fully proved that Ni-CNT-O is a carbon-coated heterostructure of Ni and NiO nanoparticles embedded into coordination polymer-derived porous carbons. The obtained Ni-CNT-O exhibits a better electrocatalytic activity for glucose oxidation stemming from the synergistic effect of a metal element and a metal oxide than unoxidized Ni-CNT, which also shows high performance with a wide linear range from 1 to 3000 μM. It also offers a high sensitivity of 79.4 μA mM–1 cm–2, a low detection limit of 500 nM (S/N = 3), and a satisfactory long-term durability. Finally, this glucose sensor exhibits good reproducibility, high selectivity, as well as satisfactory results by comparing the current response of simulated serum within egg albumen. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.2c04445 |