Understanding of protomers/deprotomers by combining mass spectrometry and computation

Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2023-07, Vol.415 (18), p.3847-3862
Hauptverfasser: Fu, Dali, Habtegabir, Sara Girmay, Wang, Haodong, Feng, Shijie, Han, Yehua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure–activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-023-04574-1