The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan
Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2023-04, Vol.305, p.120527-120527, Article 120527 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH30 xylanase from Thermothelomyces thermophila, namely TtXyn30A, was shown to release acetylated xylobiose when acting on pretreated lignocellulosic substrate. The released disaccharides could be acetylated at the 2-OH, 3-OH or both positions of the non-reducing end xylose, but the existence of the acetylation on the reducing end cannot be excluded. The synergy of TtXyn30A with acetyl esterases indicates that particular subsites within its active site cannot tolerate acetylated xylopyranose residues. Molecular docking showed that acetyl group can be accommodated on the 2- or 3-OH position of the non-reducing end xylose, unlike the reducing-end xylose (subsite −1), where only 3-OH decoration can be accommodated. Such insight into the catalytic activity of TtXyn30A could contribute to a better understanding of its biological role and thus lead to a more sufficient biotechnological utilization.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2022.120527 |