Chemical language models for de novo drug design: Challenges and opportunities
Generative deep learning is accelerating de novo drug design, by allowing the generation of molecules with desired properties on demand. Chemical language models – which generate new molecules in the form of strings using deep learning – have been particularly successful in this endeavour. Thanks to...
Gespeichert in:
Veröffentlicht in: | Current opinion in structural biology 2023-04, Vol.79, p.102527-102527, Article 102527 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generative deep learning is accelerating de novo drug design, by allowing the generation of molecules with desired properties on demand. Chemical language models – which generate new molecules in the form of strings using deep learning – have been particularly successful in this endeavour. Thanks to advances in natural language processing methods and interdisciplinary collaborations, chemical language models are expected to become increasingly relevant in drug discovery. This minireview provides an overview of the current state-of-the-art of chemical language models for de novo design, and analyses current limitations, challenges, and advantages. Finally, a perspective on future opportunities is provided. |
---|---|
ISSN: | 0959-440X 1879-033X |
DOI: | 10.1016/j.sbi.2023.102527 |