SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks
One step in interoperating among heterogeneous databases is semantic integration: Identifying relationships between attributes or classes in different database schemas. SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in identifying attribute correspondences in heterogeneous...
Gespeichert in:
Veröffentlicht in: | Data & knowledge engineering 2000-04, Vol.33 (1), p.49-84 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One step in interoperating among heterogeneous databases is semantic integration: Identifying relationships between attributes or classes in different database schemas. SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in identifying attribute correspondences in heterogeneous databases. SEMINT supports access to a variety of database systems and utilizes both schema information and data contents to produce rules for matching corresponding attributes automatically. This paper provides theoretical background and implementation details of SEMINT. Experimental results from large and complex real databases are presented. We discuss the effectiveness of SEMINT and our experiences with attribute correspondence identification in various environments. |
---|---|
ISSN: | 0169-023X 1872-6933 |
DOI: | 10.1016/S0169-023X(99)00044-0 |