Mechanism of nanoplastics capture by jellyfish mucin and its potential as a sustainable water treatment technology

The accumulation of nanoplastics (NPs) in the environment has raised concerns about their impact on human health and the biosphere. The main aim of this study is to understand the mechanism that governs the capture of NPs by jellyfish mucus extracted from the jellyfish Aurelia sp. (A.a.) and compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-04, Vol.869, p.161824-161824, Article 161824
Hauptverfasser: Ben-David, Eric A., Habibi, Maryana, Haddad, Elias, Sammar, Marei, Angel, Dror L., Dror, Hila, Lahovitski, Haim, Booth, Andy M., Sabbah, Isam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accumulation of nanoplastics (NPs) in the environment has raised concerns about their impact on human health and the biosphere. The main aim of this study is to understand the mechanism that governs the capture of NPs by jellyfish mucus extracted from the jellyfish Aurelia sp. (A.a.) and compare the capture/removal efficiency to that of conventional coagulants and mucus from other organisms. The efficacy of A.a mucus to capture polystyrene and acrylic NPs (∼100 nm) from spiked wastewater treatment plant (WWTP) effluent was evaluated. The mucus effect on capture kinetics and destabilization of NPs of different polymer compositions, sizes and concentrations was quantified by means of fluorescent NPs, dynamic light scattering and zeta potential measurements and visualized by scanning electron microscopy. A dosing of A.a. mucus equivalent to protein concentrations of ∼2–4 mg L−1 led to a rapid change in zeta potential from a baseline of −30 mV to values close to 0 mV, indicating a marked change from a stable to a non-stable dispersion leading to a rapid (
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.161824