Estimating the genetic parameters of yield-related traits under different nitrogen conditions in maize
Abstract Understanding the genetic basis responding to nitrogen (N) fertilization in crop production is a long-standing research topic in plant breeding and genetics. Albeit years of continuous efforts, the genetic architecture parameters, such as heritability, polygenicity, and mode of selection, u...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2023-04, Vol.223 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Understanding the genetic basis responding to nitrogen (N) fertilization in crop production is a long-standing research topic in plant breeding and genetics. Albeit years of continuous efforts, the genetic architecture parameters, such as heritability, polygenicity, and mode of selection, underlying the N responses in maize remain largely unclear. In this study, about n = 230 maize inbred lines were phenotyped under high N (HN) and low N (LN) conditions for 2 consecutive years to obtain 6 yield-related traits. Heritability analyses suggested that traits highly responsive to N treatments were less heritable. Using publicly available SNP genotypes, the genome-wide association study (GWAS) was conducted to identify n = 237 and n = 130 trait-associated loci under HN and LN conditions, n = 164 for N-responsive (NR) traits, and n = 31 for genotype by N interaction (G × N). Furthermore, genome-wide complex trait Bayesian (GCTB) analysis, a method complementary to GWAS, was performed to estimate genetic parameters, including genetic polygenicity and the mode of selection (S). GCTB results suggested that the NR value of a yield component trait was highly polygenic and that 4 NR traits exhibited negative correlations between SNP effects and their minor allele frequencies (or the S value |
---|---|
ISSN: | 1943-2631 0016-6731 1943-2631 |
DOI: | 10.1093/genetics/iyad012 |