Chemiluminescence Sensor for miRNA-21 Detection Based on CRISPR-Cas12a and Cation Exchange Reaction

Herein, a chemiluminescence (CL) biosensor based on CRISPR-Cas12a and cation exchange reaction was constructed to detect the biomarker microRNA-21 (miRNA-21). The rolling circle amplification (RCA) reaction was introduced to convert each target RNA strand into a long single-stranded DNA with repeate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-02, Vol.95 (6), p.3332-3339
Hauptverfasser: Zhou, Yanmei, Xie, Shupu, Liu, Bo, Wang, Cong, Huang, Yibo, Zhang, Xiaoru, Zhang, Shusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, a chemiluminescence (CL) biosensor based on CRISPR-Cas12a and cation exchange reaction was constructed to detect the biomarker microRNA-21 (miRNA-21). The rolling circle amplification (RCA) reaction was introduced to convert each target RNA strand into a long single-stranded DNA with repeated sequences, which acted as triggers to initiate the transcleavage activity of CRISPR-Cas12a. The activated Cas12a could cleave the biotinylated linker DNA of CuS nanoparticles (NPs) to inhibit the binding of CuS NPs to streptavidin immobilized on the surface of the microplate, which strongly reduced the generation of Cu2+ from a cation exchange between CuS NPs and AgNO3, and thus efficiently suppressed the CL of Cu2+-luminol-H2O2 system, giving a “signal off” biosensor. With the multiple amplification, the detection limit of the developed sensor for miRNA-21 reached 16 aM. In addition, this biosensor is not only suitable for a professional chemiluminescence instrument but also for a smartphone used as a detection tool for the purpose of portable and low-cost assay. This method could be used to specifically detect quite a low level of miRNA-21 in human serum samples and various cancer cells, indicating its potential in ultrasensitive molecular diagnostics.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.2c04484