Utility of mobile learning in Electrocardiography
Mobile learning is attributed to the acquisition of knowledge derived from accessing information on a mobile device. Although increasingly implemented in medical education, research on its utility in Electrocardiography remains sparse. In this study, we explored the effect of mobile learning on the...
Gespeichert in:
Veröffentlicht in: | European heart journal. Digital health 2021-06, Vol.2 (2), p.202-214 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mobile learning is attributed to the acquisition of knowledge derived from accessing information on a mobile device. Although increasingly implemented in medical education, research on its utility in Electrocardiography remains sparse. In this study, we explored the effect of mobile learning on the accuracy of electrocardiogram (ECG) analysis and interpretation.
The study comprised 181 participants (77 fourth- and 69 sixth-year medical students, and 35 residents). Participants were randomized to analyse ECGs with a mobile learning strategy [either searching the Internet or using an ECG reference application (app)] or not. For each ECG, they provided their initial diagnosis, key supporting features, and final diagnosis consecutively. Two weeks later, they analysed the same ECGs, without access to any mobile device. ECG interpretation was more accurate when participants used the ECG app (56%), as compared to searching the Internet (50.3%) or neither (43.5%,
=
0.001). Importantly, mobile learning supported participants in revising their initial incorrect ECG diagnosis (ECG app 18.7%, Internet search 13.6%, no mobile device 8.4%,
<
0.001). However, whilst this was true for students, there was no significant difference amongst residents. Internet searches were only useful if participants identified the correct ECG features. The app was beneficial when participants searched by ECG features, but not by diagnosis. Using the ECG reference app required less time than searching the Internet (7:44 ± 4:13 vs. 9:14 ± 4:34, |
---|---|
ISSN: | 2634-3916 2634-3916 |
DOI: | 10.1093/ehjdh/ztab027 |