Solution of the Rayleigh problem for a power law non-Newtonian conducting fluid via group method

An investigation is made of the magnetic Rayleigh problem where a semi-infinite plate is given an impulsive motion and thereafter moves with constant velocity in a non-Newtonian power law fluid of infinite extent. We will study the non-stationary flow of an electrically conducting non-Newtonian flui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2002-08, Vol.40 (14), p.1599-1609
Hauptverfasser: Abd-el-Malek, Mina B., Badran, Nagwa A., Hassan, Hossam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An investigation is made of the magnetic Rayleigh problem where a semi-infinite plate is given an impulsive motion and thereafter moves with constant velocity in a non-Newtonian power law fluid of infinite extent. We will study the non-stationary flow of an electrically conducting non-Newtonian fluid of infinite extent in a transverse external magnetic field. The rheological model of this fluid is given by the well-known expression for a power law fluid [Ing. Arch. 41 (1972) 381] τ ij=−pδ ij+k| 1 2 I 2| (n−1)/2e ij, where τ ij is the shear stress, p is the pressure, δ ij is the Kronecker symbol, k the coefficient of consistency, I 2 the second strain rate invariant, e ij the strain rate tensor and n is a parameter characteristic of the non-Newtonian behavior of the fluid. For n=1, the behavior of the fluid is Newtonian, for n>1, the behavior is dilatant and for 0< n
ISSN:0020-7225
1879-2197
DOI:10.1016/S0020-7225(02)00037-X