Semianalytic finite-element method in continuum creep fracture mechanics problems for complex-shaped spatial bodies and related systems. Part 1. Resolving relationships of the semianalytic finite-element method and algorithms for solving the continuum creep fracture problems
The paper presents physical equations of continuum creep fracture mechanics. Resolving relationships have been derived for a heterogeneous circular nonclosed finite element. The authors have constructed algorithms for solving the creep problem by using Kachanov-Rabotnov scalar parameter of damageabi...
Gespeichert in:
Veröffentlicht in: | Strength of materials 2002-09, Vol.34 (5), p.425-433 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents physical equations of continuum creep fracture mechanics. Resolving relationships have been derived for a heterogeneous circular nonclosed finite element. The authors have constructed algorithms for solving the creep problem by using Kachanov-Rabotnov scalar parameter of damageability and modeling the conditions of interaction in systems with spatial bodies. |
---|---|
ISSN: | 0039-2316 1573-9325 |
DOI: | 10.1023/A:1021017708480 |